THE ROLE OF BETA-BLOCKERS IN THE MANAGEMENT AFTER MYOCARDIAL INFARCTION

Dr. Nani Hersunarti, SpJP(K)

Department of Cardiology and Vascular Medicine
Faculty of Medicine Universitas Indonesia
National Cardiovascular Center Harapan Kita
BETA-BLOCKERS REPRESENT 2 OF 7 RX STEPS THAT SHOULD BE PROVIDED IN ALL ACUTE MYOCARDIAL INFARCTIONS

- Aspirin - Early Administration
- Aspirin at Discharge
- **Beta-Blocker - Early Administration**
- **Beta-Blocker at Discharge**
- ACE or ARB at Discharge if LV Systolic Dysfunction
- Statin – Early Administration
- Timely Initiation of Reperfusion
- Life-Style Modification
CARDIAC EFFECTS OF BETA-ADRENERGIC BLOCKING DRUGS

Opie LH, Gersh BJ, et al. Drugs for the Heart. 7th Ed, 2009
EFFECTS OF BETA-BLOCKADE ON ISCHEMIC HEART

Opie LH, Gersh BJ, et al. Drugs for the Heart. 7th Ed, 2009
CLASSIFICATION OF β-BLOCKERS

β-blockers

β1-selective

- Without ISA
 - Bisoprolol
 - Atenolol
 - Betaxolol
 - Metoprolol

- With ISA
 - Acebutolol

Non-β1-selective

- Without ISA
 - Nadolol
 - Propranolol
 - Sotaolol
 - Timolol
 - Carvedilol

- With ISA
 - Carteolol
 - Pindolol
 - Labetalol

ISA: Intrinsic Sympathomimetic Activity

Adapted from: European Heart Journal (2004) 25, 1341-1362
Intrinsic Sympathomimetic Activity (ISA) or Partial Agonist Effect

The most obvious pharmacological aspect of Beta-blockers with ISA is that they produce **less of a decrease in resting heart rate** than agents without ISA.
SECONDARY PREVENTION OF MYOCARDIAL INFARCTION WITH DIFFERENT TYPES OF BETA-BLOCKERS

Reduction of mortality

%

β₁-selective without ISA
Non-selective without ISA
β₁-selective with ISA
Non-selective with ISA

β-blockers without ISA
β-blockers with ISA

Adapted from: Progress in Cardiovascular Diseases. 27(5):335-71, 1985 Mar-Apr
WHY IS DELIVERING RELIABLE AND EVIDENCE-BASED AMI CARE IMPORTANT?

• This is a frequent and important clinical problem.

Every year, an estimated 1.1 million people in the United States are diagnosed with an acute myocardial infarction, and approximately 350,000 of these patients die during the acute phase.

• Lives can be saved by good medical care.

Medicare estimates that by implementing all seven evidence-based care components, acute myocardial infarction inpatient mortality will be reduced by as much as 40%.

NEED FOR THIS PRESENTATION
MEDICARE QUALITY DATA DEMONSTRATED

• Despite knowledge since the early 1980s of the benefits of beta-adrenergic blockers, after acute myocardial infarction, only 45% received beta-blockers.

• Subsequent studies have shown improvement, but there is still a big treatment gap.

LET’S REVIEW THE DATA THAT SUPPORTS THE BENEFIT OF BETA-BLOCKER THERAPY IN AMI

• Pre-Thrombolytic Era

• Reperfusion Era (Lytics, PCI, and CABG)
PRE-TROMBOLYTIC ERA
BETA BLOCKER HEART ATTACK TRIAL (BHAT) 1986

• 3,837 patients randomized
• Propranolol or placebo and followed for 25 months

• Propranolol significantly reduced:
 • total mortality
 • cardiovascular mortality
 • sudden death
 • nonfatal infarction

A randomized trial of propranolol in patients with acute myocardial infarction. JAMA 1982;247
CONCLUSION OF PRE-TROMBOLYTIC ERA

Multiple studies for over 20 years have demonstrated:

→ Beta-blockers in patients Pre-Thrombolytic Era have a mortality benefit ranging between 10 and 15%
REPERFUSION ERA
UNDER-USAGE OF BETA-BLOCKERS AFTER MYOCARDIAL INFARCTION

Use of medications post MI

Ellerbeck et al. JAMA 1995; 273: 1509
BETA BLOCKADE AFTER MYOCARDIAL INFARCTION - 1999

- Meta analysis of 31 long-term trials performed during the reperfusion era on almost 25,000 patients

- 10.1% reduction in overall mortality

SYM CARD 2013 PADANG-WEST SUMATERA 17- 19 MEI 2013
INTERNATIONAL STUDY OF INFARCT SURVIVAL
ISIS-1

• 16,027 patients randomized
• Atenolol or placebo followed for 1 year

• Atenolol significantly reduced:
 • Total mortality
 • Cardiovascular mortality

A randomized trial of intravenous atenolol among 16,027 cases of suspected acute myocardial infarction. ISIS-1. Lancet 1986;2
CAPRICORN-2001

- 1,959 patients randomized
- Carvedilol or placebo followed for 1 year
- Demonstrate the benefit carvedilol following acute MI in patients with LV dysfunction
- Carvedilol significantly reduced:
 - All-cause mortality
 - All-cause mortality or hospital admission secondary to cardiovascular cause
 - Sudden death
 - Hospital admission for heart failure
 - Non-fatal MI

Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomized trial. Lancet 2001 May 5
CONCLUSION OF TROMBOLYTIC ERA

• Large trials have demonstrated that beta-blockers benefit all these AMI patient groups
 • No reperfusion therapy
 • Thrombolytic therapy
 • Percutaneous coronary intervention
 • CABG
CAUTION #1: DOCUMENTATION

- Failure to give a beta-blocker, with a good clinical reason, and to then not appropriately document this, is often analyzed and publicly interpreted as underuse, a gap in care or poor medical care.

- The further assumption is that these non-treated patients often suffered a higher unnecessary rate of death and complications.
THE PRACTICE STANDARD FOR BETA BLOCKERS MAKES TWO MEASUREMENTS AND REQUIRES TWO CHART DOCUMENTATIONS:

- Was it given in the first 24 hours?
- Was the patient discharged on a BB?
2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

3.1. Beta Blockers: Recommendations

1. Oral beta blockers should be initiated in the first 24 hours in
3. Patients with initial contraindications to the use of beta
blockers in the first 24 hours after STEMI should be reeval-
uation to determine their subsequent eligibility. (Level of
Evidence: C)

2. Use of beta blockers in patients with diabetes mellitus, history of
third-degree heart block, active asthma, or reactive airways
disease) (414–416). (Level of Evidence: B)

3. Patients with initial contraindications to the use of beta
blockers in the first 24 hours after STEMI should be reeval-
uation to determine their subsequent eligibility. (Level of
Evidence: C)
8.1. Beta Blockers: Recommendations

1. It is reasonable to administer intravenous beta blockers at the time of presentation to patients with STEMI and no contraindications to their use who are hypertensive or have ongoing ischemia (414–416). (Level of Evidence: B)
ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation

Oral treatment with beta-blockers should be considered during hospital stay and continued thereafter in all STEMI.

Oral treatment with beta-blockers is indicated in patients with heart failure or LV dysfunction.

Intravenous beta-blockers must be avoided in patients with hypotension or heart failure.

Intravenous beta-blockers should be considered at the time of presentation in patients without contraindications, with high blood pressure, tachycardia and no signs of heart failure.
CAUTION #2: DO NO HARM

What are clinical situations where a beta-blocker should not be given and could hurt the patient?
CONTRAINDICATIONS TO BETA-BLOCKER USE DURING ACUTE MYOCARDIAL INFARCTION

- Sign of Heart Failure
- Low output state
- Increased risk of cardiogenic shock
- Prolonged first-degree or high-grade AV block
- Reactive airway disease

ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation, 2012
The data of the recently completed COMMIT Trial reinforces that beta-blocker therapy should be withheld if the patient is at all unstable.
CAUTION #3:
DO NOT WITHHOLD BETA-BLOCKER THERAPY FOR INAPPROPRIATE REASONS

- Elderly
- Diabetes Mellitus
- UAP/NSTEMI
- Congestive Heart Failure
- Hypertension
- COPD
Despite convincing evidence of effectiveness, BB remain underutilized in ED management of AMI, especially in the elderly.
Effectiveness of Beta-Blocker Therapy After Acute Myocardial Infarction in Elderly Patients With Chronic Obstructive Pulmonary Disease or Asthma

Jersey Chen, MD, MPH,* Martha J. Radford, MD, FACC,*†‡ Yun Wang, MS,†‡ Thomas A. Marcinak, MD,§ Harlan M. Krumholz, MD, FACC*†‡¶

New Haven and Middletown, Connecticut, and Baltimore, Maryland

OBJECTIVES We evaluated the use and effectiveness of beta-blocker therapy after acute myocardial infarction (AMI) for elderly patients with chronic obstructive pulmonary disease (COPD) or asthma.

BACKGROUND Few data exist on COPD or asthma in elderly AMI patients.

CONCLUSIONS Beta-blocker therapy after AMI may be beneficial for COPD or asthma patients with mild disease. A survival benefit was not found for elderly AMI patients with more severe pulmonary disease. (J Am Coll Cardiol 2001;37:1950–6) © 2001 by the American College of Cardiology

RESULTS Of 54,962 patients without contraindications to beta-blockers, patients with COPD or asthma (20%) were significantly less likely to be prescribed beta-blockers at discharge after AMI. After adjusting for demographic and clinical factors, we found that beta-blockers were associated with lower one-year mortality in patients with COPD or asthma who were not on beta-agonist therapy (relative risk [RR] = 0.85, 95% confidence interval [CI] 0.73 to 1.00), similar to patients without COPD or asthma (RR = 0.86, 95% CI 0.81 to 0.92). A survival benefit for beta-blockers was not found among patients concurrently using beta-agonists or with severe COPD or asthma.

CONCLUSIONS Beta-blocker therapy after AMI may be beneficial for COPD or asthma patients with mild disease. A survival benefit was not found for elderly AMI patients with more severe pulmonary disease. (J Am Coll Cardiol 2001;37:1950–6) © 2001 by the American College of Cardiology
The Effectiveness of \(\beta\)-Blockers After Myocardial Infarction in Patients With Type 2 Diabetes

Charlotte G. McDonald, MD, MS, FRCPC
Sumit R. Majumdar, MD, MPH, FRCPC
Jeffrey L. Mahon, MD, MS, FRCPC
Jeffrey A. Johnson, PhD

Statistically significant. Similarly, use of \(\beta\)-blockers was not independently associated with reduced risk for recurrent MI. Importantly, however, the rate of rehospitalization within 30 days of starting a \(\beta\)-blocker was not increased, suggesting that the use of these agents is not associated with major adverse effects in people with type 2 diabetes.

CONCLUSIONS — \(\beta\)-Blocker therapy post-MI was not associated with reduced mortality or fewer recurrent events in people with type 2 diabetes in routine practice, although these medications were safe in this population.

Diabetes Care 28:2113–2117, 2005
Impact of Acute Beta-Blocker Therapy for Patients with Non-ST-Segment Elevation Myocardial Infarction

Chadwick D. Miller, MD,a Matthew T. Roe, MD, MHS,b Jyotsna Mulgund, MS,b James W. Hoekstra, MD,a Renato Santos, MD,a Charles V. Pollack, Jr., MD, MA,c E. Magnus Ohman, MD,b W. Brian Gibler, MD,d Eric D. Peterson, MD, MPHb

ABSTRACT

PURPOSE: Early use of beta-blockers is a quality indicator for the treatment of patients with non-ST-segment elevation myocardial infarction (NSTEMI), despite limited data from randomized clinical trials in this population. We sought to determine the impact of acute beta-blocker therapy on outcomes in patients with NSTEMI.

RESULTS: A total of 82.5% of patients without documented contraindications received acute beta-blocker therapy. Factors strongly associated with acute beta-blocker use included prior beta-blocker use, higher presenting systolic blood pressure, lower heart rate, lack of signs of heart failure, and cardiology care. Acute beta-blocker use was associated with lower in-hospital mortality (unadjusted 3.9% vs 6.9%, P < .001, adjusted odds ratio 0.66, 95% confidence interval 0.60-0.72), lower adjusted mortality among most of 6 subgroups determined by propensity to receive acute beta-blockers, and lower adjusted mortality in patients with and without signs of heart failure and in those < 80 years and those ≥ 80 years old.

CONCLUSIONS: The majority of NSTEMI patients receive acute beta-blocker therapy. Certain patient subgroups remain undertreated. Because treatment with acute beta-blockers was associated with improved clinical outcomes in nearly all patient subgroups assessed, broader use in patients with NSTEMI appears warranted. © 2007 Elsevier Inc. All rights reserved.
Management of patients with myocardial infarction and hypertension

G. Y. H. Lip, C. Lydakis and D. G. Beevers

University Department of Medicine and Department of Cardiology, City Hospital, Birmingham, U.K.

risk of stroke if thrombolysis is unacceptable. In our evidence-based medicine era, available data from large trials show that only beta-blockers and ACE inhibitors, amongst the several antihypertensive drug classes, convincingly save lives in long-term post-myocardial infarction. Amongst the calcium antagonists, only verapamil and perhaps diltiazem may be used as an alternative if no significant left ventricular dysfunction is present.
Are beta-blockers effective in patients who develop heart failure soon after myocardial infarction? A meta-regression analysis of randomised trials

Timothy Houghtona, Nick Freemantleb, John G.F. Clelanda,*

Abstract

greater in this group. \textit{Conclusions:} This analysis suggests that the relative benefit of beta-blockers on mortality after a myocardial infarction is similar in the presence or absence of heart failure but that the absolute benefit may be greater in the former. However, as current clinical practice has changed radically from the time when the majority of these trials were conducted, further trial evidence would be desirable.© 2000 Society of Cardiology. All rights reserved
The statistical mortality benefits for the elderly, diabetic, COPD, UAP/NSTEMI, hypertension, and congestive heart failure subgroups are all quite similar.
DOSAGES OF BETA-BLOCKERS AFTER MYOCARDIAL INFARCTION

- Metoprolol tartrate 25 to 50 mg every 6 to 12 h orally, then transition over next 2 to 3 d to twice-daily dosing of metoprolol tartrate or to daily metoprolol succinate; titrate to daily dose of 200 mg as tolerated
- Carvedilol 6.25 mg twice daily, titrate to 25 mg twice daily as tolerated
- Metoprolol tartrate IV 5 mg every 5 min as tolerated up to 3 doses; titrate to heart rate and BP
- Bisoprolol 1.25 mg once daily, titrate to 10 mg once daily as tolerated

ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation, 2012
SUMMARY

• NOT all of β – blockers are the same

• On the day of admission, all patients should receive beta-blocker therapy unless there are absolute contraindications or if the patient is unstable.

• If therapy was withheld because the patient was unstable, it should be given once the patient is stable.

• By the day of discharge, all patients should be on a beta-blocker unless there is an absolute contraindication.

• Before and After Reperfusion era, β – blockers are beneficial for patients post myocardial infarction
Take Home Message

β - blockers
THANK YOU